从1947年美国贝尔实验室里诞生的点接触型的锗晶体管开始,芯片半导体产业迅猛发展,如今已精密到

  中美贸易摩擦从2018年开始不断升级,影响全球,其中技术封锁和非法断供是美国一系列施压措施的武器之一,以打击国内一批高科技企业。首当其冲就是芯片半导体产业。

  但前不久,IT之家报道了台积电因美国施压可能无法向华为稳定供货14nm芯片的消息,虽然还不确定结果,但不得不令人担忧。

  根据美国《出口管理条例》的限制,产品涵盖硬件、软件等的美国技术含量超过25%,就会被要求禁止销售给中国。

  这意味着若美国真的将“源自美国技术”的标准从25%下调至10%,那么14nm芯片的供货将受到限制。

  作为台积电重要客户之一,华为将深受不利影响。更让人担忧的是,万一未来7nm、甚至5nm芯片供应也被限制,那华为无疑也将被扼住7寸。

  IDM意思是芯片的设计、制造、封测都能做,有完整能力,像三星;Foundry的意思是只做代工,例如台积电;Fabless就是专注于芯片设计与销售,例如华为海思。

  而纵观国际市场,能满足华为代工要求的,只有三星和台积电两家。三星本身和华为有着竞争关系,所以一直以来华为和台积电合作紧密。

  并且最近市场还有传闻,台积电担心华为过度建立库存,因而减少华为7nm芯片的供货,重新分配产能。

  而这一天很可能来得比想象中快,就像去年美国政府将华为列入实体清单,几天之后谷歌就暂停了安卓和其他服务对华为的支持。

  还好华为意识到了这一点,IT之家之前也报道,华为正积极将14nm芯片订单转交给大陆芯片代工厂中芯国际。

  中芯国际2019年已经成功实现第一代14纳米FinFET工艺量产。2020年1月14日,中芯南方厂投产国内首条14nm生产线nm技术已经进入客户导入阶段,这是一个令人振奋的消息。

  对于目前十分关键的7nm工艺,中芯国际早在2017年就开始布局,并打算在今年年内进行风险试产。

  但是,目前有一个问题横亘在面前:他们缺少一台7nm EUV光刻机。这是决定能否大规模量产7nm芯片的关键设备。

  2018年末,就在接近7nm EUV光刻机向中芯国际交付的时间点上,ASML的元器件供应商Prodrive突遇火灾,工厂部分库存、生产线年的交货计划也被迫延迟。

  然后,英国路透社称援引不具名的知情人士消息,美国政府从2018年开始就与荷兰官员至少进行了4轮会谈,企图阻止ASML向中国出售EUV光刻机。为此美国国务卿蓬佩奥甚至亲自游说荷兰政府。

  这中间,还有荷兰当地媒体报道称ASML美国子公司的中国员工窃取ASML的技术并泄露给中国企业的事件。

  不过好在,ASML方面都及时作出了澄清,他们表示媒体有关“延迟交货”的说法是存在错误的,所谓“中国间谍”窃取技术的事件也存在误读,ASML只是在几年前被硅谷的一小部分员工侵犯了知识产权,其中恰好部分涉案员工是中国人而已。

  根据瓦圣纳协议,ASML出口EUV到中国,必须取得荷兰政府出口许可,但该出口许可在今年到期,所以ASML在到期前重新进行申请,目前正等待荷兰政府核准。

  说到这里,可能有IT之家小伙伴仍然不清楚光刻机对于芯片行业的重要意义,它到底是什么?汐元利用这一节给大家科普一下。

  我们经常听说,芯片是沙子做成的。没错。芯片制造第一步就是将沙子液态化,然后去除杂质,提取高纯度的硅。

  晶圆需要进一步处理,包括在表面形成矽化合物、植入离子、化学气相沉积等各种操作,最后在晶圆表面覆盖光阻(一种光敏材料)。

  然后,关键的操作来了,我们需要将芯片设计师设计的电路图写到很多层的光罩(掩膜)上,然后用光源透过光罩,像幻灯机一样把光罩上的电路图显影在晶圆表面。

  接下来,还要对已经显影了电路图的晶圆进行蚀刻、物理气相沉积等操作,就是给晶圆表面的元件加入金属导线。

  回到刚才说到的光刻环节。光刻光刻,是把光当作刀子一样在晶圆表面刻画电路图。所以,这里的光源,非常重要。

  光源的精密程度,决定了写入晶圆的电路的精密程度,也就决定了芯片上的晶体管能做多小,这,也就和我们挂在嘴边的XX纳米工艺直接相关。

  在此之前,行业里主流的光刻机使用的是DUV深紫外光源。深紫外光源就是波长短于300nm的紫外光线,主要使用的是KrF和ArF两个波段,他们制造40nm制程以下半导体已经比较吃力了。

  但是科技厂商们发挥聪明才智,一直让DUV的支持延续到了10nm甚至7nm(也就是所谓的第一代7nm工艺),但是再往下,DUV就真Hold不住了,只能使用波长为13nm左右的EUV极紫外光线。

  我们知道,工艺制程越小,技术挑战的难度就越高,当工艺制程小于10nm的时候,逼进物理极限,摩尔定律也面临失效,这种极限挑战下,需要投入的技术资源以及研发资金是不可想象的,全球其实没有多少家半导体企业能支撑。

  而当今世界,唯一能够造出EUV极紫外光刻机的,就是ASML。所以它被人们誉为“摩尔定律的拯救者”。

  可能有IT之家小伙伴会问:为什么只有ASML能造出EUV光刻机呢?这个EUV光刻机到底难在哪里?

  上一节我们讲过,光刻这部分原理其实很简单,就是让光透过写有电路图的多层光罩,将电路图显影在晶圆上。

  极紫外光源怎么产生?方法不止一种,ASML的办法是,用强烈的雷射光两次轰击“锡液滴”,就可以产生波长13.5nm的极紫外光。

  变成的雷射光还要经过一段复杂的照明光学系统,目的是将雷射光整形成需要的样子,然后通过光罩来成像。

  首先,如何让雷射准确击中锡液滴?而且是前脉冲和主脉冲能够击中锡液滴2次,同时每秒钟击50000次。怎么样,吓人吧。

  再就是刚才说的,EUV光产生后,还需要经过复杂的光学系统,怎么样让光不被光学镜片吸收,保证转换效率?这需要极端强大的光学技术支持。

  有数据说,每台EUV光刻机有超过10万个零件、3千条电线公里长的软管等零组件,最大重量达180公吨。

  根据媒体报道,此前中芯国际订购的EUV光刻机是1.2亿欧元,相当于人民币9亿多元,而先进的EUV光刻机可以达到1.5亿美元,约合人民币10亿元!这比美国第四代战斗机F35的价格还贵!

  虽然这么贵,但想买EUV光刻机还不止是钱的问题,关键是它的产量极低,ASML一年也就能生产十几到二十台EUV光刻机,全球那么多半导体企业,争破头皮也不一定买得到。

  简单来说,其实早期的光刻机制造并不复杂,最早是日本的尼康和佳能进入这个领域,但后来让美国的Perkin Elmer和GCA公司捷足先登。

  不过他们很给力,第二年就和蔡司合作改进光学系统,1986年就推出了自家很棒的第二代产品PAS-2500。

  到了八十年代末,GCA衰亡,Perkin Elmer卖身给美国另一家巨头光刻机SVG。但后来,SVG发展也不行了,在2000年被ASML收购,ASML在这次收购中获得了关键的反射技术。

  90年代末21世纪初,行业需要超越193nm的解决方案,这实际上是ASML和尼康的决战。ASML在2002年接受台积电提出的浸入式193nm的技术方案,光源也就是DUV深紫外光。

  于是ASML从此逐渐超越尼康,成为光刻机领域的霸主。后来英特尔离开了尼康,转身投向ASML阵营。

  至于EUV光刻机,其实最早是英特尔牵头搞的,还联合很多公司以及实验室成立了一个专门研究EUV的组织,其中就包括ASML。

  2012年,英特尔、三星和台积电分别以41亿、5.03亿、8.38亿欧元入股ASML,因为要打造EUV光刻机,耗资巨大。

  当然,英特尔、三星和台积电也没吃亏,后来事实证明,他们不仅享有EUV光刻机的优先供货权,并且由于ASML股价暴涨,在后来出售或减持ASML股份时,这三巨头都获利颇丰。

  这个积淀有两个途径,一个是自身研发投入,另一个是并购,例如前面说的,收购SVG获得了关键的反射技术,还有收购美国光学技术供应商Cymer得到了光源技术,收购蔡司半导体公司24.9%的股权,并与之共同研发最顶尖的光学技术。

  ASML有一项独特的规定,就是要想获得光刻机的优先供货权,必须入股自己,这样就等于将半导体巨头们绑定成利益共同体,无论是资金还是技术资源,都有保证。

  其实,ASML光刻机设备90%的零部件都依赖外购,正是因为和众多技术供应商形成利益共同体的关系,ASML才能整合最顶尖的资源来办大事。

  本文开头对当前局势的分析,相信IT之家小伙伴们也很清楚,对于中国来说,只有自己掌握了核心科技,才能不被外界掣肘。

  中国对光刻机的研究起步并不晚,大概在上世纪70年代,早期的型号主要是接触式光刻机。所谓接触式光刻机,也就是光罩贴在晶圆上的。中科院1445所在1977年研制出了一台接触式光刻机,比美国晚了二十年左右。

  1985年,机电部45所研制出了第一台分步投影式光刻机,而美国在1978年研制出这种光刻机,当时使用的是436nm G线年代的时候,国内光刻机在技术上和国外其实相差还不远,大概相当于国外80年代中期的水平。

  不过要知道,光刻机这种东西,工艺(即采用光源的波长)每向前进一个台阶,制造的难度、需要的资金,都是指数级增长的,越往后越难搞。

  2000年开始,我国开始启动研究193nm ArF光刻机的项目。正如前文所说,那个时候ASML已经正在研究EUV光刻机了。

  2002年,光刻机被列入国家863重大科技攻关计划,由科技部和上海市共同推动成立上海微电子装备有限公司来承担。

  上海微电子基本上也代表了目前国产光刻机的最高水平。经过十多年的发展,目前其自主研发的600系列光刻机可以实现90nm制程工艺芯片的量产,使用的还是193nm ArF光源。

  。不过,国际上其他国家也基本没有量产157nm及以下光刻机的,从这个角度看,国产光刻机和除ASML之外的国际水准也并未落后多少。目前上海微电子还在研究为65nm制程芯片服务的光刻机,什么时候能够做出来,还不好说。

  例如2019年4月,武汉光电国家研究中心的甘棕松团队成功研发出9nm工艺光刻机,这个就还是实验室里取得的成果,使用的也不是ASML的那一套方案。

  再例如2018年11月,中国科学院光电技术研究所“超分辨光刻装备研制”项目通过验收,实现了22nm的分辨率,引起媒体一阵沸腾。

  只有一个制程节点一个制程节点地去攻破,积淀技术。想要追赶国际领先的水平,只有付出更多的精力,投入更多的资源。光刻机,当然至关重要,

  同时,这个行业进化节奏之快,对于科研人员来说,也没有太多成绩上的激励,必须十年甚至几十年如一日地沉下心来去做。